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Information Rigidities in USDA Forecasts 

Several previous studies find that revisions to USDA production and yield forecasts for major 

agricultural commodities are correlated, and conclude that they are biased away from what would 

be observed under rational expectations due to smoothing on the part of forecasters. Yet correlated 

revisions may also be explained by information rigidities that cause forecasts to be infrequently 

updated. We apply a recently-developed test to these USDA revisions for corn, soybeans, and 

wheat and—contrary to previous studies—find no significant evidence of smoothing in USDA 

forecasts. Rather, we show that information frictions are the more likely culprit, due to production 

and yield information that is either too costly to obtain or too noisy to make sense of in real time. 

Because our results offer robust evidence that consensus USDA production and yield forecasts are 

characterized by information rigidities rather than smoothing, their efficiency can be improved by 

investments, such as in better satellite or remote sensing technology, that make crop and 

production information less costly to obtain and/or more precise. 
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Agricultural markets are characterized by volatile supply due to weather patterns, crop diseases, 

and pests, and therefore volatile prices. Given that regularity, to assist market participants the U.S. 

Department of Agriculture (USDA) has for decades provided the public with price, demand, and 

supply forecasts for major agricultural commodities over each marketing year. These reports play 

a key role in setting expectations and guiding private production, consumption, and inventory 

decisions along the supply chain. Markets react to their news. Isengildina-Massa et al. (2008) find 

that WASDE reports significantly impact corn and soybean futures markets. Adjemian (2012) 

demonstrates that futures prices rapidly incorporate government information following the 

publication of these reports. Irwin, Gerlow, and Liu (1994) and Isengildina-Massa et al. (2006) 

establish how market participants consider USDA forecasts as benchmarks while making supply 

chain decisions. Isengildina-Massa et al. (2021) show that USDA’s January report clusters, which 

include final forecasts for several commodities’ marketing year, have a significant impact on 
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nearby futures prices. Further, Goyal and Adjemian (2021) show that unpublished USDA reports 

increase the cost of managing risk.  

Yet several studies indicate that major USDA forecasts depart from rationality, a condition in 

which forecasters use all available information to form expectations. Nordhaus (1987) 

conceptualizes efficient forecasts as those whose (1) errors are independent of revisions, and (2) 

under which each revision is independent of all previous revisions. Because forecast errors can be 

written in terms of forecast revisions, conditions (1) and (2) imply each other. Related empirical 

work in the agricultural economics literature focuses on violations of condition (2), and concludes 

that the source of the problem is forecast “smoothing”, the strategic avoidance by forecasters of 

large revisions perhaps to avoid sudden swings in commodity prices (given the sensitivity of the 

markets to USDA news). For example, Isengildina-Massa et al. conclude that corn and soybean 

production forecasts (2006) and yield forecasts (2013) are smoothed. Xiao et al. (2017) find that 

the USDA tends to underestimate ending stocks, and make inefficient projections that are 

consistent with smoothing. Isengildina-Massa et al. (2017) identify smoothing in wheat production 

forecasts (in addition to corn and soybeans), and show that market participants adjust for this 

inefficiency by not reacting to the predictable component of the market surprise and forecast 

revision.  

These studies ignore the role of information rigidities, an alternative explanation for predictable 

forecast errors. Coibion and Gorodnichenko (2015) formalize the concept and use it to explain 

measured departures from full-information rational expectations (FIRE) present in fixed-event 

forecasts for macroeconomic time series. Under sticky information (Mankiw and Reis, 2002), 

agents update their information sets infrequently owing to the costs involved in data collection and 

the degree of information friction is the probability of not acquiring new information. In a world 
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with noisy information (Woodford, 2001), although agents update their information sets frequently 

they do so via a signal extraction problem, and information rigidities occur because the 

fundamental process is only observed with noise. Coibion and Gorodnichenko (2015) show that 

both models (1) converge and (2) like smoothing, generate predictable forecast errors; however, 

these models produce a different association between forecast errors and forecast revisions than 

would be observed under smoothing. That is, information frictions permit departures from 

complete information while preserving the notion of rationality.  

We use this approach to reassess USDA’s forecast revisions to its production and yield forecasts 

for corn, soybeans, and wheat from 1985 – 2018. Contrary to previous studies, we show that 

revisions to these series are consistent with models of information rigidity rather than smoothing, 

and estimate the degree of weight that rigidities lead USDA to place on previous information: on 

average, between 20% - 50% and between 5% - 45% in the case of production forecasts and yield 

forecasts, respectively, depending on the point in the forecasting cycle. Because they do not have 

access to full information, rigidities therefore cause USDA forecasters to underreact. We further 

show other competing explanations for predictable forecast errors do not apply. For example, 

forecast errors may be predictable if forecasters have an asymmetric loss function (Capistrán and 

Timmermann, 2009; Bora et al., 2020); yet asymmetric loss would generate a negative sign on 

contemporaneous forecast revisions and a positive sign on lagged revisions, opposite to what the 

data show. In addition, since USDA releases forecasts simultaneously, production forecasts are 

jointly determined with yield forecasts. Therefore, we consider a model in which the predictability 

of production forecast errors depends not only on production forecast revisions but also on yield 

forecast revisions. Our results show that adding the other variable’s forecast revisions does not 

offer any statistical improvements.  
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Beyond contributing to the literature as the first study to explore and demonstrate information 

rigidities in USDA forecasts, our findings imply different practical considerations for improving 

them. Although smoothing to production and yield forecasts could be addressed by simply making 

projections more flexible to incorporate new information—i.e., making forecasters act more 

rational—information rigidities imply that the new information itself is too costly or difficult to 

observe. Given our findings that USDA forecasts are consistent with rationality and information 

rigidity, USDA may be able to enhance its forecasts by improving its ability to observe new 

information about production or yields, perhaps by making investments in satellite or remote 

sensing technology that can offer more precise and up-to-date data.  

Background 

USDA is home to two of the 13 Federal Statistical System agencies: the Economic Research 

Service (ERS) and the National Agricultural Statistics Service (NASS) (Bora et al., 2020). NASS 

provides production forecasts for major domestic commodities like corn, soybeans, and wheat 

according to a set schedule around the production cycle (from August through November for corn 

and soybeans, and from May through August for wheat). NASS publishes an annual summary 

(usually released in January) including its final estimates for corn, soybeans; from 1985-1994, this 

summary also contained final estimates for wheat. From 1995 onward, USDA publishes final 

estimates for wheat in the September small grains annual summary report.  

Production forecasts consist of two main components: expected yield per acre and harvested 

acreage (Schnepf, 2017). The agency conducts agricultural surveys of over 100,000 farmers across 

10,000 area segments and 75,000 farms in the United States using a multiple-frame statistical 

methodology and reports the first projections for harvested acreage based on farmers’ planting 

intentions (in March) and actual acreage decisions (in June) (USDA, 2012). NASS conducts two 

https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Advanced_Topics/Yield%20Forecasting%20Program%20of%20NASS.pdf
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different yield surveys to inform its subsequent yield forecasts. A subsample of farmers 

participating in the June Agricultural Survey is selected to participate in monthly yield surveys. 

NASS also conducts direct field observations (objective yield surveys) in the primary producing 

states for these commodities. These surveys for winter wheat begin in April, and for other crops 

in July. Monthly visits are made to the selected fields to collect data. To determine net yield per 

acre, these surveys are adjusted for the estimated harvest loss. Each member of the NASS 

Agricultural statistics board reviews these surveys and brings their estimate to a collective review 

meeting, where they deliberate to form a consensus national yield forecast (Schnepf, 2017).  

These production and yield projections are fed into the balance sheet forecasts USDA makes each 

month in the World Agricultural Supply and Demand Estimates (WASDE) report. WASDE 

balance sheets are themselves consensus forecasts generated by combining the NASS-derived 

production and yield data with insights from several other USDA agencies: the Foreign 

Agricultural Service, the Economic Research Service, the Farm Service Agency, and the 

Agricultural Marketing Service (Vogel and Bange, 1999; Goyal and Adjemian, 2021). Since the 

two reports are released concurrently, WASDE incorporates NASS production and yield forecasts 

in its estimates.  

Data 

Cornell University’s library system maintains the monthly crop production. These reports provide 

projections on each forecast year’s production, yield, and acreage (harvested acres). Like 

Isengildina-Massa et al., we extract crop production forecasts from NASS crop production reports 

(2006), and yield forecasts from WASDE reports (2013); between the 1985/86 and the 2018/19 

marketing years USDA made 169 such forecasts of each kind for corn and soybeans, and 170 for 
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wheat.1 The January yield estimates are often revised in subsequent WASDE reports. However, 

Isengildina-Massa et al. (2013) note these revisions follow a long-time lag and are sporadic. In the 

models we estimate below, we also use CBOT closing futures prices for each commodity, and the 

nearby volatility index (VIX);  we source these data from the Bloomberg platform. To form a 

continuous series of close-to-close changes in closing prices for each commodity, we rollover to 

the next deferred contract fifteen days prior to the contract expiration month. 

For each commodity, we compute forecast errors as  𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ, where 𝑥𝑡+ℎ is the log of final 

realization for the marketing year,2 occurring at time t+h.3 The time t consensus forecast for that 

value is represented by 𝐹𝑡𝑥𝑡+ℎ. Similarly, the forecast revision at time t is given by 𝐹𝑡𝑥𝑡+ℎ −

 𝐹𝑡−1𝑥𝑡+ℎ.      

Table 1 reports summary statistics for the USDA forecast errors of these elements for all three 

commodities. USDA’s corn and soybean production and yield errors are highest in August and 

September; for wheat, yield forecast errors are largest in May and June, while production forecasts 

miss most in August. Average pooled projection errors are positive for corn, soybeans, and wheat 

yield, but slightly negative for wheat production, indicating the USDA’s tendency to underestimate 

production and yield in most cases.  

Likewise, table 2 displays summary statistics for USDA forecast revisions for each commodity. 

October production and yield estimates are largest for corn, whereas soybean production revisions 

are largest in November and the biggest yield revisions are shared by September and October. July 

 
1 Two missing report days occur over the period of observation: the October 2013 WASDE, which was simply 

curtailed, and the January 2019 WASDE, whose information was released the following month. For the latter, we 

use the information published in the February 2019 WASDE. 
2 Following Isengildina et al. (2006), we apply log transformations to account for increases in crop size over time. 
3 The quantity t+h takes values from 1 to 5, corresponding to the monthly forecasts over USDA’s forecast cycle for 

each commodity.    
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has the largest average forecast revisions for wheat production and yield. Pooled production and 

yield revisions are positive for all three commodities. 

Are USDA Production and Yield Forecasts Smoothed? 

Nordhaus (1987) defines forecasts as weakly efficient if their current information set consists of 

all past estimates, and forecast errors and revisions are independent of previous revisions. 

Therefore, USDA forecasts exhibit “weak-form” efficiency if: 

 𝐸[𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ| 𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ, 𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ, … . . ] = 0 (1) 

 𝐸[𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ| 𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ, … . . ] = 0 (2) 

where, 𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ is the forecast error at time t, and 𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ is the forecast revision 

at time t.  

Forecast errors will be predictable if forecasters act strategically to minimize revisions, possibly 

to avoid short-run changes in forecasts and prevent sudden swings in market prices (Isengildina et 

al., 2017). Previous research studies (Isengildina-Massa et al., 2006, 2013, 2017) run the following 

base regression (or its modification where they include the sum of preceding months’ forecast 

revisions, and the out-of-sample percent deviation as additional regressors) to test for smoothing: 

 𝐹𝑡𝑥𝑡+ℎ − 𝐹𝑡−1𝑥𝑡+ℎ = 𝛽0 + 𝛽1(𝐹𝑡−1𝑥𝑡+ℎ − 𝐹𝑡−2𝑥𝑡+ℎ) + 𝐸𝑟𝑟𝑜𝑟𝑡  (3) 

Clearly a statistically significant 𝛽1̂ implies predictability of forecast revisions (and errors, given 

their fundamental relationship), which violates Nordhaus’ definition of efficiency. However, it is 

not possible from equation (3) to determine the source of that predictability: whether due to 

strategic smoothing or information rigidities.  

Information rigidities 
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Let 𝐸𝑡𝑥𝑡+ℎ be the full-information rational expectation of 𝑥𝑡+ℎ made at time t. Agents observe the 

full information set and use it to form these expectations, so any errors are random and 

unpredictable. In contrast, information friction models suggest that forecasters are rational, even 

though they don’t have access to full information. This could be either because they are rationally 

inattentive (due to costs of acquiring information) or only view the process with noise; in either 

case, forecast errors are predictable. The full-information rational expectation error is given by 

𝑣𝑡+ℎ,𝑡 =  𝑥𝑡+ℎ − 𝐸𝑡𝑥𝑡+ℎ. Following Ager et al. (2009), we define 𝑣𝑡+ℎ,𝑡 as: 

 𝑣𝑡+ℎ,𝑡 =  ∑ 𝑢𝑡+𝑘,𝑡

ℎ

𝑘=1

 (4) 

Where, 𝑢𝑡+𝑘,𝑡 is the shock occurring at time t+k and signals the arrival of new information in that 

period. Following Ager et al. (2009), we assume that 𝑢𝑡+𝑘,𝑡 is independently and identically 

distributed and follows a normal distribution, N(0, 𝜎𝑢
2). The sum of all shocks occurring between 

t+1 and t+h is given by 𝑣𝑡+ℎ,𝑡. Forecast errors in (4), 𝑣𝑡+ℎ,𝑡, are unpredictable. However, that is 

usually not the case with actual forecast errors (𝐹𝑡𝑥𝑡+ℎ − 𝐹𝑡−1𝑥𝑡+ℎ), which tend to be 

predictable/correlated with one another (Vereda et al., 2021). Previous literature proposes two 

general theoretical models to explain predictable forecast errors: models of sticky and noisy 

information. 

Sticky information models 

When information is sticky, the fixed cost of obtaining it leads forecasters to update infrequently; 

they are rationally inattentive. Information rigidity in these models is defined as the probability of 

not acquiring new information in each period. Fully-updated information sets generate forecasts 

with unpredictable forecast errors. Following Mankiw and Reis (2002) and Coibion and 
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Gorodnichenko (2015), the time t forecast for 𝑥𝑡+ℎ is given by a weighted average of past and 

current fully-updated forecasts as defined in equation (5). 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝜆) ∑ 𝜆𝑖𝐸𝑡−𝑖

∞

𝑖=0

𝑥𝑡+ℎ (5) 

In this model, forecasters update their information set with probability 1 − 𝜆. The probability of 

not acquiring new information (𝜆) can be interpreted as the degree of information rigidity. One 

can also interpret it as the probability of not forming FIRE forecasts in that period. Upon 

rearranging the terms in equation (5), Coibion and Gorodnichenko (2015) show that ex-post 

forecast errors and ex-ante mean forecast revisions have the following relationship: 

 𝑥𝑡+ℎ −  𝐹𝑡𝑥𝑡+ℎ =
𝜆

1−𝜆
 (𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡    (6) 

When it is costless to acquire new information (𝜆 = 0), there are no information frictions present, 

and the forecast errors are unpredictable using the information at time t or earlier. If frictions are 

present, then (6) reflects a slow and incomplete process of updating information from one period 

to the next. This anchors the department’s forecast to the previous period’s leading to a gradual 

adjustment of the USDA forecast and predictability of forecast errors.  We can re-write (6) as: 

 𝑥𝑡+ℎ −  𝐹𝑡𝑥𝑡+ℎ = 𝛽(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡 (7) 

where, 𝛽 =
𝜆

1−𝜆
 . Equation (7) is equivalent to the regression of forecast errors on forecast 

revisions.  

In the online appendix, we also show that equation (7) is equivalent to: 
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 𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ =
𝛽

1 + 𝛽
 (𝐹𝑡−1𝑥𝑡+ℎ − 𝐹𝑡−2𝑥𝑡+ℎ) +

1

1 + 𝛽
(𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ) (8) 

Here, (𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ) is the FIRE forecast revision. We can re-write (8) as: 

 𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ = 𝜆 (𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ) + (1 − 𝜆)(𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ) (9) 

Equation (9) is equivalent to estimating a regression of forecast revisions on lagged forecast 

revisions. However, in this setup degrees of freedom are constrained since the first two 

observations for each marketing year are lost, with the first corresponding to the contemporaneous 

forecast revision, and the second observation associated with the lagged forecast revision. 

Equation (9) is equivalent to equation (3), used in the existing literature to detect smoothing (see, 

e.g.,  Isengildina-Massa et al., 2006, 2013, 2017). Here, comparing equations (3) and (9), we show 

that 𝛽1̂ = 𝜆. Hence, 𝛽1̂ can be interpreted as the probability of not acquiring new information, and 

hence tests for the presence of frictions, not smoothing, in forecasts. 

In the background section, we note that USDA consensus production and yield forecasts are 

partially based on surveys of large numbers of producers, and are subject to the judgment of 

various analysts. These producers and analysts likely face a cost to update their information sets, 

leading to rational inattention on the part of survey participants and forecasters. Aggregation of 

these partially-updated forecasts leads to inefficiency in the consensus projection, resulting in 

predictability in forecast errors (Coibion and Gorodnichenko, 2015).   

Noisy information models 

Under this model, agents continuously update their information sets, and hence their forecasts, 

according to the following process: 

 𝐸𝑡𝑥𝑡+ℎ =  𝐸𝑡−1𝑥𝑡+ℎ + 𝑣𝑡+ℎ,𝑡   (10) 
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Agents are trying to forecast 𝑥𝑡+ℎ, whose value at time t is given by 𝐸𝑡𝑥𝑡+ℎ, but they do not directly 

observe 𝐸𝑡𝑥𝑡+ℎ. Instead, they observe noisy signals about the true state. Consider an agent i who 

observes the signal 𝑌𝑡+ℎ,𝑡
𝑖 , given by equation (11): 

 𝑌𝑡+ℎ,𝑡
𝑖 = 𝐸𝑡𝑥𝑡+ℎ + 𝜔𝑡+ℎ,𝑡

𝑖  (11) 

 

where 𝜔𝑡+ℎ,𝑡
𝑖  is “iid” normally distributed noise with mean 0 and variance σ𝜔

2 . Noise obstructs the 

direct observation of 𝐸𝑡𝑥𝑡+ℎ. To generate forecasts of 𝐸𝑡𝑥𝑡+ℎ, each agent solves a signal extraction 

problem. Specifically, they use (11) as a prediction equation and (10) as an update equation of the 

state-space Kalman filter to make predictions described by the following:4 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝐺)𝐹𝑡−1𝑥𝑡+ℎ + 𝐺(𝐸𝑡𝑥𝑡+ℎ)  (12) 

where G is the Kalman gain and represents the weight placed on new information. We assume that 

 𝑔𝑡+ℎ,𝑡
𝑖  (Kalman gain for individual i at time t) converges to G. If G = 1, we are back in the full-

information rational expectations world with no noise. However, noisy signals due to information 

rigidities result in rejections of FIRE, causing predictability in forecast errors. In this model, (1-G) 

can be interpreted as the degree of information rigidity.  Upon rearranging certain terms, Coibion 

and Gorodnichenko (2015) show  that equation (12) is equivalent to: 

 𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ =
(1 − 𝐺)

𝐺
(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) +  𝑣𝑡+ℎ,𝑡 (13) 

As Coibion and Gorodnichenko (2015) show, with 𝛽 =
1−𝐺

𝐺
, equation (13) reduces to equation (7), 

so that both sticky-information models and noisy-information models establish a similar 

relationship between ex-post forecast errors and ex-ante forecast revisions. In the former case, 

 
4 The appendix includes a detailed derivation. Note that the proof has different Kalman filter equations compared to 

the derivation offered by Coibion and Gorodnichenko (2015), because those authors test across different horizons. 

Here, each marketing year has only one forecast horizon.  
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information rigidities represent the probability that forecasters do not use rational expectations 

based on complete information; in the latter, they represents the weight that agents place on past 

information. In the noisy-information framework, adjustment of beliefs takes place gradually. In 

the sticky-information setup, some agents do not update their information sets; those who do 

immediately achieve full-information rational expectations. In each, individual forecasters 

introduce rigidities in consensus forecasts.  

Forecast smoothing 

Forecasters who want to smooth, perhaps to prevent large swings in forecast revisions, face a 

dynamic optimization problem to minimize both forecast errors and revisions. Coibion and 

Gorodnichenko (2015) write it down as: 

 min ∑ 𝛾𝑗

ℎ

𝑗=0

𝐸𝑡[(𝑥𝑡+ℎ −  𝐹𝑡+𝑗𝑥𝑡+ℎ)
2

+ 𝛼(𝐹𝑡+𝑗𝑥𝑡+ℎ − 𝐹𝑡+𝑗−1𝑥𝑡+ℎ)
2

] (14) 

where, the actual realization is given by 𝑥𝑡+ℎ,  𝐹𝑡+𝑗𝑥𝑡+ℎ is the forecast at time t+j, and 𝐹𝑡+𝑗−1𝑥𝑡+ℎ 

is the forecast in the previous period. Forecast error at time t+j is (𝑥𝑡+ℎ −  𝐹𝑡+𝑗𝑥𝑡+ℎ), and 

𝐹𝑡+𝑗𝑥𝑡+ℎ − 𝐹𝑡+𝑗−1𝑥𝑡+ℎ is the forecast revision in the same period. The relative weight a forecaster 

places on minimizing the revision is given by 𝛼, and 𝛾 is the discount factor. The authors show 

that equation (14) can be rearranged to produce: 

 

𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ

= −(1 + 𝛼𝛾)(𝐹𝑡𝑥𝑡+ℎ − 𝐹𝑡−1𝑥𝑡+ℎ) + 𝛼(𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ)

+ 𝐸𝑟𝑟𝑜𝑟𝑡 

               

(15) 

According to (15), when related to the time t forecast error, the sign on contemporaneous forecast 

revision is negative, while the sign on the lagged revision is positive—a consequence of the 
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intertemporal trade-off resulting from the costs associated with the adjustment to new information. 

For example, suppose the USDA decides to ignore today’s production or yield information in order 

to smooth. In that case, tomorrow’s expectation adjustment will have to be a lot stronger to keep 

up with the information trend (Beckmann and Reitz, 2020). Like Coibion and Gorodnichenko 

(2015), we estimate (15) for corn, soybeans, and wheat production and yield forecasts and report 

the results in Tables 3 and 4, respectively. Since the error in (15), 𝐸𝑟𝑟𝑜𝑟𝑡, is correlated with the 

time t information set, an Ordinary Least Squares regression is inconsistent; like those authors we 

use instrumental variables (IV) methods to estimate the relationship between forecast errors and 

forecast revisions.   

Specifically, we use the change in the natural log of the nearby futures closing price one day before 

the report release as an instrument for corn and soybeans production revisions and corn, soybeans, 

and wheat yield forecast revisions. Because this instrument is too weak for wheat production 

revisions, we use the change in natural log of the nearby volatility index (VIX) one day before the 

report release as an instrument for wheat production revisions.5 Since the first-stage F-statistic is 

low in some cases (especially for wheat), we also report a standard weak instrument conditional 

likelihood (CL) ratio confidence interval: one that provides accurate inference under weak 

instruments (Moreira, 2003). Andrews et al. (2006) and Mikusheva (2010) show that the CL 

confidence interval has favorable power compared to other weak instrument confidence intervals 

such as the Anderson-Rubin test statistic (Anderson and Rubin, 1949).  

Results 

 
5 We considered using a variety of instruments simultaneously (including the change in nearest-to-deliver log of the 

closing price, change in log VIX, change in log crude oil price, rainfall index, and global policy uncertainty index). 

But, doing so provided no significant increase in explanatory power. For simplicity, we used only one instrument for 

all IV regressions.  
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In table 3, we report the OLS and IV results for corn & soybeans production (pooled across 

September and October), and wheat (pooled across July and August). For IV regressions, table 3 

also gives the CL confidence interval, for the endogenous time t revision. Opposite the prediction 

consistent with smoothing in equation (15), for all three commodities in table 3 the sign on the 

contemporaneous revision is positive (across different months and the pooled data). The sign on 

the lagged revision fluctuates across commodities, but lagged revisions in the table are never 

statistically significant—a similar finding to the results presented in Coibion and Gorodnichenko’s 

(2015) own table 3. The first-stage F-statistic of 11.3 for pooled corn production indicates that the 

IV is sufficiently strong, and the 95% confidence interval [0.204, 1.837] does not contain negative 

values. We infer similar results for pooled soybeans production with the first-stage F-statistic of 

12.07. For pooled wheat production, the first-stage F-statistic of 4.23 indicates that the instrument 

may be weak; moreover, the 95% CL confidence interval (robust to weak instruments) contains 

both negative and positive values. Taken together, contrary to previous studies we find no evidence 

of smoothing in production forecasts for corn and soybeans, but the results are indeterminate about 

the presence of smoothing in wheat production forecasts. 

Table 4 reports the OLS and IV regression results for corn, soybeans, and wheat yield forecasts. 

IV regressions for the pooled corn yield forecast has a first-stage F-statistic of 20.2, and the 

coefficients are opposite to what equation (15) predicts in the case of smoothing. Our test of 

soybean yield forecasts offers the same perspective. For wheat, the first-stage F-statistic of 5.8 

indicates that the instrument, nearby change in log futures closing prices, is weak. However, weak-

instrument robust methods generate a 95% confidence interval for the contemporaneous revision 

that does not contain negative values.  
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Taken together, our results in tables 3 and 4 indicate that USDA production and yield forecasts for 

corn, soybeans, and wheat do not exhibit smoothing. This runs contrary to established findings in 

the literature (Isengildina-Massa et al., 2006, 2013, 2017; and Xiao et al., 2017). These findings 

necessitate further investigation as to whether these forecasts are inefficient or not. Next, we test 

for information rigidities in these projections. In an environment with zero rigidities, forecasters 

regularly update their information sets and place a 100% weight on new information. However, 

when rigidities are present forecasters place at least some weight on previous forecasts. Therefore, 

the value of information rigidity tells us either how frequently USDA updates its information set 

(in a costly-information world), or how much importance it gives to previous forecasts (in a noisy 

world). We do not distinguish between the applicability of either model.  

Following Coibion and Gorodnichenko (2015), and Bordalo et al. (2020), we run the following 

regression:  

 𝑥𝑡+ℎ −  𝐹𝑡𝑥𝑡+ℎ = 𝛽0 +  𝛽1(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡 (16) 

According to the sticky and noisy information models (refer equations (7) and (13)), 𝛽1> 0 in 

equation (16) is consistent with the presence of information rigidities and departures from full-

information rational expectations. Further, note that 𝛽1> 0 implies that the forecaster underreacts 

to their own information set, while 𝛽1< 0 confirms overreaction. Specifically, the sticky 

information model in equation (7) states that �̂� =  
𝛽1̂

1+𝛽1̂
, and the average duration between 

information updates is given by 
1

(1−𝜆)̂
. On the other hand, the noisy information model in equation 

(13) states that �̂� =  
1

1+𝛽1̂
. We use the Delta method to compute the standard errors for �̂�, and �̂�, 

and then use the relations above to interpret the regression findings in the context of both models.  
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We report results for regression equation (3) in tables 5 and 6, for production and yield, 

respectively, and plot our implied rigidity coefficients in figures 1 and 2. Each table includes both 

OLS standard errors and the Newey-West (N-W) standard errors (Newey and West, 1987),6 and 

also information rigidity parameters, �̂�, and �̂�.7 

Figure 1 documents visually how—in a costly information world— our results imply that, on 

average, USDA updates its information set within three months for corn and wheat, and two 

months for soybeans; note that over the forecasting cycle, the average duration between 

information updates declines for the three commodities. Alternatively, figure 2 shows graphically 

that—in a noisy information world—the implied weight USDA places on new information ranges 

between 60%-80% for corn, soybeans, and wheat; note that for all commodities USDA tends to 

place relatively more weight on new information it learns as the forecasting cycle progresses. Both 

figures demonstrate that as more precise information about the prospective harvest comes in, 

USDA forecasts display less indication of underlying informational rigidity.   

Table 5 shows that for corn production, �̂� is statistically significant in regressions for every forecast 

revision, as well as the pooled revisions. For example, the October error-on-revision regression 

result of �̂� = 0.49 implies that USDA forecasters in aggregate update their information set about 

corn production every two months. Likewise, October’s �̂� = 0.51 signifies in a noisy information 

world that while forming a corn production forecast USDA puts almost equal weight on the 

previous estimates and new information. Corn production’s pooled �̂� = 0.63 (which is dragged up 

by November’s �̂� = 0.73) implies that, at the mean, USDA on average places 63% more 

 
6 N-W standard errors assume heteroskedasticity and autocorrelation in the error structure, providing a more 
robust variance-covariance matrix estimate. 
7 For �̂� ≥ 0, �̂�  ∈ [0, 1], and �̂�  ∈ [0, 1]. 
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importance on new information than previous forecasts and updates its corn information set every 

1-2 months. At the beginning of the forecasting cycle, uncertainty is high, reflected in a higher 

value of �̂� for September and October regressions. However, as we move further along the cycle, 

either USDA updates its information relatively more quickly and gives more credence to newer 

information or observes more precise production signals.  

Panel B of Table 5 reports statistically significant information rigidities in soybeans production 

for October, November, and Pooled regressions. The USDA updates its information set within two 

months (�̂� = 0.22) and places much higher weight on new information (77%, on average) compared 

to previous forecasts. Results for wheat are in panel C of Table 5. The maximum rigidity is 

observed in June (closer to the onset of the forecasting cycle) when the agency puts slightly lower 

weight on new information (48%). The Department updates its information set every two months 

and places more importance on new data for these balance sheet elements. Overall, our results for 

production forecasts show that, on average (average of �̂�′𝑠 in column (4) of table 5), the USDA 

puts approximately 70% weight on new information and 30% on previous predictions.  

Table 6 provides similar findings for corn, soybeans, and wheat yield forecasts. For pooled corn 

yield projections, USDA updates its information set within two months (�̂� = 0.33) and places 66% 

weight on new information compared to previous forecasts. For soybeans, USDA places much 

higher weight on new information sets for September, October, November, and Pooled data. 

Wheat’s maximum rigidity is observed in June, and implies that USDA places only a 42% weight 

on new information. Like in the case of production, our pooled estimates imply that USDA updates 

its information about average yield forecasts about every two months, and forecasters put higher 

weight on new information than previous forecasts. 
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Our results for all three commodities confirm the presence of information rigidities in production 

and yield projections. Even though USDA conducts regular farmer surveys and yield measures to 

gather production and yield data, the cost or noise involved in updating individual (farmer or 

forecaster) information sets generates departures from the relationship between forecast errors and 

revisions that would obtain under fully efficient forecasts.  

Alternate Explanations 

Heterogeneous Loss Functions 

Predictability in forecast errors could instead arise due to asymmetric loss functions, even with 

fully updated expectations, due to differential costs associated with overprediction and 

underprediction. Capistrán and Timmerman (2009) identify potential asymmetric loss-driven 

government forecasts. More recently, Bora et al. (2020) evaluate several USDA forecasts and find 

evidence of asymmetric loss. Coibion and Gorodnichenko (2015) use the “Linex” loss function 

proposed in Capistrán and Timmerman (2009) and show that under the asymmetric loss function, 

the correlation between forecast error and revision is negative.8 This correlation is in the opposite 

direction to what we observe in tables 5 and 6, so we reject it as an explanation for predictable 

USDA production and yield forecast errors. 

Generalized noisy-information models 

As we note in the previous sections, the noisy-information model assumes that forecast errors 

depend only on forecast revisions of the variable under consideration. However, since production 

estimates are jointly determined with yield forecasts (E[production]  =  E[yield] ∗

E[harvested acreage]), the predictability of either set of forecast errors may depend on the 

predictability of the other. To test this, following Coibion and Gorodnichenko (2015), we specify 

 
8 For details, please refer to the online appendix of Coibion and Gorodnichenko (2015). 
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a two-variable vector autoregression (VAR) process with the specification given by equations (17) 

and (18): 

𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ −  𝐹𝑡𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ

= 𝛽
11

(𝐹𝑡𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ −  𝐹𝑡−1𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ) + 𝛽
12

(𝐹𝑡𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ

−  𝐹𝑡−1𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ) + 𝛾
𝑃𝑟𝑜𝑑,𝑡

 

(17) 

𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ −  𝐹𝑡𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ

= 𝜃11(𝐹𝑡𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ −  𝐹𝑡−1𝑥𝑌𝑖𝑒𝑙𝑑,𝑡+ℎ) + 𝜃12(𝐹𝑡𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ

−  𝐹𝑡−1𝑥𝑃𝑟𝑜𝑑,𝑡+ℎ) + 𝜖𝑌𝑖𝑒𝑙𝑑,𝑡 

(18) 

For such models, the state equation of the Kalman filter (Coibion and Gorodnichenko, 2015) is 

given by: 

 [
𝑥𝑡

(1)

𝑥𝑡
(2)

] = 𝑧𝑡 = [
𝑏11 𝑏12

𝑏21 𝑏22
] 𝑧𝑡−1 + 𝑢𝑡 (19) 

where 𝑥𝑡
(𝑖)

 is the full-information rational expectation of variable 𝑥(𝑖)at time t, and 𝑢𝑡 is iid error 

distributed normally with mean 0 and variance Σ𝑢.  

The measurement equation for the Kalman filter (Coibion and Gorodnichenko, 2015) is given by: 

 𝑌𝑖,𝑡 = 𝑧𝑡 + 𝜔𝑖,𝑡, ωi,t ~  iid N(0, Σω) (20) 

Where 𝑌𝑖,𝑡 is the signal observed for variable 𝑧𝑡 with noise 𝜔𝑖,𝑡. Coibion and Gorodnichenko 

(2015) show that in such a setup, the Kalman gain 𝐺 is given by (𝑀 + 𝐼)−1. Where, 𝑀 is an 

estimate from the following model: 𝑧𝑡 − 𝑧𝑡|𝑡 =  𝑀 (𝑧𝑡|𝑡 −  𝑧𝑡|𝑡−1) +  𝑒𝑟𝑟𝑜𝑟𝑡, an error-on-revision 

regression analogous to equation (3) in the univariate case. The diagonal elements of 𝐺 represent 

the decrease in forecast error variance due to new information available at time t. For the univariate 
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model, the forecast error of a variable depends only on that variable’s revision. Following Coibion 

and Gorodnichenko (2015), we use these diagonal elements to compute the implied degree of 

information rigidity.  

Table 7 and 8 reports the information rigidity measure (1- 𝐺) from the above model for production 

and yield forecasts, respectively. Following Coibion and Gorodnichenko (2015), we run 1000 

simulations of the regression coefficients to generate robust estimates of implied information 

rigidity for both the univariate and the multivariate models. We also report the Bayesian 

Information Criterion (BIC) to compare the univariate and the multivariate model specifications.9 

We note that the univariate model has a lower BIC value for corn production and yield (except 

corn October yield), indicating it as the preferred model over the multivariate specification. 

Moreover, an F-test fails to reject the null hypothesis of equivalence between the information 

rigidities derived from the univariate and multivariate approaches. Panels B and C of table 7 show 

similar findings for soybeans and wheat production & yield forecasts. Even though the univariate 

specification for pooled wheat yield forecasts has a higher BIC value, we fail to reject the 

equivalence of the two specifications. Therefore, our results confirm that considering a 

multivariate setup does not alter our findings.  

Conclusion 

USDA’s crop production and yield estimates are consensus forecasts generated by combining 

insights from farmer surveys, field observations, and a team of individual NASS forecaster 

perspectives. Several previous studies attribute correlated NASS forecast revisions to smoothing 

bias on the part of USDA, which—knowing that its reports contain market-moving information—

 
9 BIC estimates the posterior probability of the estimated model being true; lower BIC values are preferred. 
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may wish to avoid causing price shocks. That sort of behavior would produce less-than-efficient 

forecasts; ignoring new information violates the rational-expectations assumption. We argue that 

correlated revisions can instead be generated when consensus forecasts like those produced by 

USDA are infrequently updated due to information frictions, such as when acquiring new 

information is very costly or when the information-gathering process is subject to noise. In both 

cases, when generating new projections forecasters place at least some weight on previous 

forecasts. In this setting, less-than-efficient forecasts can still be produced by forecasters who act 

rationally, but who do not have access to full information.  

We use a test devised by Coibion and Gorodnichenko (2015) that is based on the relationship 

between ex-post forecast errors and ex-ante revisions to demonstrate that predictable USDA 

production and yield forecast errors are more consistent with information frictions rather than 

smoothing. We also rule out an alternative explanation that may generate predictable forecast 

errors, like asymmetric loss, and verify that a multivariate framework offers no statistical 

improvement on our univariate parameters. Our findings imply that, on average, these rigidities 

lead USDA to place substantial weight on the previous forecast: 20%-50% for production forecasts 

and 5%-45% for production and yield, respectively, across corn, soybeans, and wheat. Because 

our results offer robust evidence that consensus USDA production and yield forecasts are 

characterized by information rigidities rather than smoothing, their efficiency may be improved 

by investments, such as in better satellite or remote sensing technology, that make crop and 

production information less costly to obtain and/or more precise. 
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Table 1: Average USDA Forecast Errors for Production and Yield (Log scale), 1985 - 2018 

Mean Forecast 

Error 
(1) (2) (3) (4) (5) 

Panel A: Corn 
 August September October November Pooled 

Production 
0.007 0.007 0.003 -0.0006 0.003 

(0.009) (0.008) (0.005) (0.002) (0.003) 

Yield 
0.009 0.009 0.002 -0.001 0.004 

(0.008) (0.007) (0.005) (0.002) (0.002) 

Panel B: Soybeans 
 August September October November Pooled 

Production 
0.014 0.013 0.005 -0.001 0.006 

(0.010) (0.009) (0.004) (0.002) (0.003) 

Yield 
0.017 0.016 0.007 0.00004 0.008 

(0.009) (0.008) (0.004) (0.017) (0.003) 

Panel C: Wheat 
 May June July August Pooled 

Production 
0.001 0.005 -0.004 -0.008 -0.001 

(0.011) (0.009) (0.003) (0.002) (0.003) 

Yield 
0.019 0.017 0.006 -0.0006 0.007 

(0.010) (0.008) (0.005) (0.003) (0.003) 

      Standard errors are reported in parentheses.  

      Source: Authors’ calculations based on USDA data. 
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Table 2: Average USDA Forecast Revisions for Production and Yield (Log scale), 1985 -2018 

Mean Forecast 

Revision 
(1) (2) (3) (4) (5) 

Panel A: Corn 
 September October November January Pooled 

Production 
-0.0003 0.004 0.003 -0.0006 0.002 

(0.003) (0.004) (0.003) (0.002) (0.002) 

Yield 
0.0003 0.006 0.004 -0.001 0.002 

(0.003) (0.004) (0.004) (0.002) (0.001) 

Panel B: Soybeans 
 September October November January Pooled 

Production 
0.0009 0.007 0.008 -0.001 0.004 

(0.004) (0.006) (0.003) (0.002) (0.002) 

Yield 
0.008 0.008 0.001 0.00004 0.004 

(0.003) (0.006) (0.004) (0.002) (0.002) 

Panel C: Wheat 

 June July August 
January/ 

September 
Pooled 

Production 
-0.004 0.008 0.004 -0.008 0.0002 

(0.004) (0.007) (0.002) (0.002) (0.002) 

Yield 
0.002 0.014 0.005 -0.0006 0.005 

(0.003) (0.006) (0.003) (0.003) (0.002) 

 

      Standard errors are reported in parentheses.  

     Source: Authors’ calculations based on USDA data. 
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Table 3: Test for Smoothing in Corn, Soybeans, and Wheat Production Forecasts 

Forecast Error (1) (2) 

Panel A: Corn 
 Pooled Revisions 
 OLS IV 

Revision 
0.592*** 0.860** 

(contemporaneous) 
 (0.101) (0.329) 

Revision 
-0.091 -0.208 

(lagged) 
 (0.096) (0.181) 

1st stage F-statistic - 11.26*** 

Weak-Instrument Interval - (0.204, 1.837) 

Panel B: Soybeans 
 Pooled Revisions 

 OLS IV 

Revision 
0.345*** 0.633*** 

(contemporaneous) 

 (0.061) (0.205) 

Revision 
0.012 -0.044 

(lagged) 

 (0.053) (0.002) 

1st stage F-statistic - 12.07*** 

Weak-Instrument Interval - (0.271, 1.309) 

Panel C: Wheat 
 Pooled Revisions 

 OLS IV 

Revision 
0.175*** 0.038** 

(contemporaneous) 

 (0.054) (0.874) 

Revision 
0.013 0.043 

(lagged) 

 (0.049) (0.098) 

1st stage F-statistic - 4.23** 

Weak-Instrument Interval - (-4.617, 0.939) 

 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Authors’ Calculations based on USDA data. 
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Table 4: Test for Smoothing in Corn, Soybeans, and Wheat Yield Forecasts  

Forecast Error (1) (2) 

Panel A: Corn 
 Pooled Revisions 

 OLS IV 

Revision 
0.514*** 0.702*** 

(contemporaneous) 

 -0.09 -0.192 

Revision 
-0.068 -0.139 

(lagged) 

 -0.082 -0.118 

1st stage F-statistic - 20.18*** 

Weak-Instrument Interval - (0.261, 1.252) 

Panel B: Soybeans 
 Pooled Revisions 

 OLS IV 

Revision 
0.351*** 0.688*** 

(contemporaneous) 

 0.058 -0.228 

Revision 
-0.009 -0.079 

(lagged) 

 -0.051 -0.071 

1st stage F-statistic - 9.77*** 

Weak-Instrument Interval - (0.300, 1.576) 

Panel C: Wheat 
 Pooled Revisions 

 OLS IV 

Revision 
0.059 0.588 

(contemporaneous) 

 -0.071 -0.354 

Revision 
0.000073 -0.141 

(lagged) 

 -0.069 -0.129 

1st stage F-statistic - 5.74** 

Weak-Instrument Interval - (0.065, 3.648) 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Authors’ Calculations based on USDA data. 
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Table 5: Regression Results and Information Rigidities for Corn, Soybeans, and Wheat 

Production 

Forecast Error (1) (2) (3) (4) 

Panel A: Corn 
 September October November Pooled 

�̂� 0.764** 0.969*** 0.362*** 0.581*** 

OLS S.E. 0.458 0.191 0.105 0.126 

N-W. S.E. 0.298 0.209 0.047 0.093 

�̂� 0.433*** 0.492*** 0.266*** 0.367*** 

𝐺 0.567*** 0.508*** 0.734*** 0.633*** 

S.E. 0.029 0.054 0.026 0.037 

Panel B: Soybeans 
 September October November Pooled 

�̂� 0.189 0.393*** 0.381*** 0.286*** 

OLS S.E. 0.349 0.108 0.105 0.104 

N-W. S.E. 0.211 0.036 0.048 0.051 

�̂� 0.159 0.282*** 0.276*** 0.222*** 

𝐺 0.841*** 0.718*** 0.724*** 0.773*** 

S.E. 0.149 0.019 0.025 0.031 

Panel C: Wheat 
 June July August Pooled 

�̂� 0.917*** 0.224*** 0.408*** 0.339*** 

OLS S.E. 0.329 0.079 0.168 0.092 

N-W. S.E. 0.15 0.059 0.079 0.045 

�̂� 0.478*** 0.183*** 0.289*** 0.253*** 

𝐺 0.522*** 0.817*** 0.711*** 0.747*** 

S.E. 0.041 0.039 0.039 0.025 

 

*** p<0.01, ** p<0.05, * p<0.1 

significance stars are based on N-W standard errors.  

Source: Authors’ Calculations based on USDA data. 

  



30 
  

Table 6: Regression Results and Information Rigidities for Corn, Soybeans, and Wheat Yield 

Forecast Error (1) (2) (3) (4) 

Panel A: Corn 
 September October November Pooled 

�̂� 0.673** 0.845*** 0.262*** 0.509*** 

OLS S.E. 0.428 0.188 0.069 0.119 

N-W. S.E. 0.281 0.196 0.034 0.105 

�̂� 0.402*** 0.458*** 0.208*** 0.337*** 

𝐺 0.598*** 0.542*** 0.792*** 0.663*** 

S.E. 0.1 0.057 0.021 0.046 

Panel B: Soybeans 
 September October November Pooled 

�̂� 0.194 0.391*** 0.308*** 0.276*** 

OLS S.E. 0.329 0.108 0.086 0.103 

N-W. S.E. 0.189 0.037 0.054 0.049 

�̂� 0.163 0.281*** 0.236*** 0.216*** 

𝐺 0.837*** 0.718*** 0.764*** 0.784*** 

S.E. 0.133 0.019 0.031 0.03 

Panel C: Wheat 
 June July August Pooled 

�̂� 1.413*** 0.062 0.257* 0.245*** 

OLS S.E. 0.389 0.141 0.163 0.099 

N-W. S.E. 0.181 0.081 0.158 0.052 

�̂� 0.585*** 0.059 0.205** 0.197*** 

𝐺 0.414*** 0.941*** 0.795*** 0.803*** 

S.E. 0.031 0.071 0.1 0.034 

*** p<0.01, ** p<0.05, * p<0.1 

significance stars are based on N-W standard errors.  

Source: Authors’ Calculations based on USDA data. 
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Table 7: Implied Information Rigidities for Corn, Soybeans, and Wheat Production 

Model Measure September October November Pooled 

Panel A: Corn 

Univariate 
Information Rigidity 

0.40 0.48 0.26 0.36 

(0.17) (0.07) (0.05) (0.06) 

BIC -107 -149 -197 -590 

Multivariate 
Information Rigidity 

0.71 0.85 0.54 0.14 

(0.6) (0.41) (1.47) (0.33) 

BIC -103 -147 -194 -586 

p-value for test of model equivalence 0.61 0.30 0.85 0.51 

Panel B: Soybeans 

Univariate 
Information Rigidity 

0.10 0.28 0.26 0.21 

(0.32) (0.05) (0.04) (0.07) 

BIC -96 -152 -207 -561 

Multivariate 
Information Rigidity 

0.61 0.26 0.31 0.25 

(0.74) (0.26) (0.56) (0.19) 

BIC -92 -149 -203 -556 

p-value for test of model equivalence 0.51 0.97 0.95 0.84 

Panel C: Wheat 

Univariate 
Information Rigidity 

0.53 0.18 0.23 0.27 

(0.09) (0.08) (0.1) (0.07) 

BIC -102 -167 -199 -577 

Multivariate 
Information Rigidity 

0.83 0.29 0.22 0.28 

(1.09) (0.09) (0.17) (0.07) 

BIC -73 -122 -172 -482 

p-value for test of model equivalence 0.78 0.38 0.96 0.88 
Source: Authors’ Calculations based on USDA data. 
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Table 8: Implied Information Rigidities for Corn, Soybeans, and Wheat Yield 

Model Measure September October November Pooled 

Panel A: Corn 

Univariate 
Information Rigidity 

0.37 0.44 0.21 0.33 

(0.17) (0.07) (0.04) (0.06) 

BIC -112 -151 -223 -610 

Multivariate 
Information Rigidity 

0.68 -0.04 0.17 0.00 

(0.53) (1.18) (0.89) (0.37) 

BIC -108 -157 -221 -606 

p-value for test of model equivalence 0.56 0.69 0.96 0.38 

Panel B: Soybeans 

Univariate 
Information Rigidity 

0.11 0.28 0.25 0.21 

(0.29) (0.05) (0.04) (0.07) 

BIC -99 -156 -218 -574 

Multivariate 
Information Rigidity 

0.49 0.20 -0.32 0.04 

(0.79) (0.28) (0.79) (0.25) 

BIC -96 -153 -216 -570 

p-value for test of model equivalence 0.63 0.79 0.45 0.50 

Panel C: Wheat 

Univariate 
Information Rigidity 

0.58 0.10 0.22 0.21 

(0.06) (0.1) (0.15) (0.07) 

BIC -95 -115 -152 -524 

Multivariate 
Information Rigidity 

0.80 -0.05 0.14 0.06 

(0.55) (0.16) (0.24) (0.09) 

BIC -92 -115 -149 -527 

p-value for test of model equivalence 0.68 0.42 0.77 0.22 
Source: Authors’ Calculations based on USDA data. 
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Figure 1. Average Duration between Information Updates, 1985-2018 

Panel 1.a: Corn 

 

 

Panel 1.b: Soybeans 

 

 

Panel 1.c: Wheat 

 

Source: Authors’ Calculations based on USDA data. 
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Figure 2. Implied Weight USDA Places on New Information, 1985-2018 

Panel 2.a: Corn 

 

 

Panel 2.b: Soybeans 

 

 

Panel 2.c: Wheat 

 

Source: Authors’ Calculations based on USDA data. 
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Appendix 

Sticky information model 

Coibion and Gorodnichenko (2015) show that the time t forecast for 𝑥𝑡+ℎ is given by a weighted 

average of past and current fully-updated forecasts as defined in equation (A.1). 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝜆) ∑ 𝜆𝑖𝐸𝑡−𝑖

∞

𝑖=0

𝑥𝑡+ℎ (A.1) 

 

 

𝐹𝑡𝑥𝑡+ℎ = (1 − 𝜆)𝐸𝑡𝑥𝑡+ℎ +  (1 − 𝜆)𝜆𝐸𝑡−1𝑥𝑡+ℎ  +  (1 − 𝜆)𝜆2 𝐸𝑡−2𝑥𝑡+ℎ + ⋯ (A.2) 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝜆)𝐸𝑡𝑥𝑡+ℎ +  𝜆𝐹𝑡−1𝑥𝑡+ℎ (A.3) 

 

Using 𝑣𝑡+ℎ,𝑡 =  𝑥𝑡+ℎ − 𝐸𝑡𝑥𝑡+ℎ (refer to equation (4) in the main text), we get: 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝜆)(𝑥𝑡+ℎ − 𝑣𝑡+ℎ) +  𝜆𝐹𝑡−1𝑥𝑡+ℎ (A.4) 

 

Adding and subtracting 𝜆𝐹𝑡𝑥𝑡+ℎ on the R.H.S. of equation (A.4), and rearranging the terms gives 

us the following: 

 (1 − 𝜆)(𝐹𝑡𝑥𝑡+ℎ − 𝑥𝑡+ℎ) =  −𝜆(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) − (1 − 𝜆)𝑣𝑡+ℎ,𝑡 (A.5) 

 𝑥𝑡+ℎ −  𝐹𝑡𝑥𝑡+ℎ =
𝜆

1−𝜆
 (𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡    (A.6) 

We can rewrite (A.6) as: 

 𝑥𝑡+ℎ −  𝐹𝑡𝑥𝑡+ℎ = 𝛽(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡 (A.7) 
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where, 𝛽 =
𝜆

1−𝜆
 . Equation (A.7) is equivalent to running the regression of forecast errors on 

forecast revisions. We use this equation to test for the presence of information rigidities in the 

production and yield forecasts. We can re-write equation (A.7) as: 

 𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ = 𝛽 (𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡−1 (A.8) 

 

Subtracting (A.8) from (A.7), we get: 

(1 + 𝛽)(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) = 𝛽 (𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ) + 𝑣𝑡+ℎ,𝑡−1 − 𝑣𝑡+ℎ,𝑡 

Solving this further: 

(1 + 𝛽)(𝐹𝑡𝑥𝑡+ℎ − 𝐹𝑡−1𝑥𝑡+ℎ) = 𝛽 (𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ) + 𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ 

 𝐹𝑡𝑥𝑡+ℎ − 𝐹𝑡−1𝑥𝑡+ℎ =
𝛽

1 + 𝛽
 (𝐹𝑡−1𝑥𝑡+ℎ −  𝐹𝑡−2𝑥𝑡+ℎ) +

1

1 + 𝛽
(𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ) (A.9) 

Here, (𝐸𝑡𝑥𝑡+ℎ −  𝐸𝑡−1𝑥𝑡+ℎ) is the new information available at time t.  

Equation (A.9) is equivalent to equation (3) in the main text. We show that equations (A.7) and 

(A.9) are equivalent. Note that equation (A.9) is used in the existing literature to detect smoothing 

(see, e.g.,  Isengildina-Massa et al., 2006, 2013, 2017). Here, we show that this equation tests for 

the presence of frictions, not smoothing, in forecasts. 
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Noisy information model 

Under this model, Coibion and Gorodnichenko (2015) show that agents continuously update their 

information sets, and hence their forecasts, according to the following process. 

 𝐸𝑡𝑥𝑡+ℎ =  𝐸𝑡−1𝑥𝑡+ℎ + 𝑣𝑡+ℎ,𝑡−1   (A.10) 

Agents do not directly observe 𝐸𝑡𝑥𝑡+ℎ. Instead, they observe noisy signals about the true state. 

Consider an agent i who observes the signal 𝑌𝑡+ℎ,𝑡
𝑖 , given by equation (A.11): 

 𝑌𝑡+ℎ,𝑡
𝑖 = 𝐸𝑡𝑥𝑡+ℎ + 𝜔𝑡+ℎ,𝑡

𝑖  (A.11) 

 

The best estimator of 𝐸𝑡𝑥𝑡+ℎ,𝑡 based on the information set available to individual i at time t-1 is 

given by: 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

= 𝐸𝑡−1
𝑖 (𝐸𝑡𝑥𝑡+ℎ) =  𝐸𝑡−1

𝑖 (𝐸𝑡−1𝑥𝑡+ℎ + 𝑣𝑡+ℎ,𝑡−1) (A.12) 

 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

=  𝐸𝑡−1
𝑖 (𝐸𝑡𝑥𝑡+ℎ) =  𝐸𝑡−1

𝑖 (𝐸𝑡−1𝑥𝑡+ℎ ) + 𝐸𝑡−1
𝑖 (𝑣𝑡+ℎ,𝑡−1) (A.13) 

Since 𝐸𝑡−1
𝑖 (𝑣𝑡+ℎ,𝑡) = 0, we get: 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

=  𝐸𝑡−1
𝑖 (𝐸𝑡𝑥𝑡+ℎ) =  𝐸𝑡−1

𝑖 (𝐸𝑡−1𝑥𝑡+ℎ )  (A.14) 

Based on the concept of Kalman Filters, we know that the best estimator for 𝐸𝑡𝑥𝑡+ℎcan be 

obtained by: 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
+

=  (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

+ 𝑔𝑡+ℎ,𝑡
𝑖 (𝜔𝑡+ℎ,𝑡̂ 𝑖)

−
  (A.15) 

where, (𝜔𝑡+ℎ,𝑡̂ 𝑖)
−

is the measurement residual given by: (𝜔𝑡+ℎ,𝑡̂ 𝑖)
−

=  𝑌𝑡+ℎ,𝑡
𝑖 −   (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−

. 

Therefore, we can re-write equation (A.15) as: 
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 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
+

=  (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

+  𝑔𝑡+ℎ,𝑡
𝑖  [ 𝑌𝑡+ℎ,𝑡

𝑖 −   (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
−

]   (A.16) 

 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
+

=  𝑔𝑡+ℎ,𝑡
𝑖 (𝑌𝑡+ℎ,𝑡

𝑖 )  + (1 −   𝑔𝑡+ℎ,𝑡
𝑖 ) (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−

  (A.17) 

From (A.10), we get: 

 (𝐸𝑡𝑥𝑡+ℎ
̂ 𝑖

)
+

=  𝑔𝑡+ℎ,𝑡
𝑖 (𝐸𝑡𝑥𝑡+ℎ + 𝜔𝑡+ℎ,𝑡

𝑖 )  + (1 −   𝑔𝑡+ℎ,𝑡
𝑖 ) (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−

  (A.18) 

Now, we assume that the Kalman gain,  𝑔𝑡+ℎ,𝑡
𝑖 , converges to 𝐺. And, averaging it across all 

individuals to get consensus forecasts: 

 
1

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

+
𝐼

𝑖= 1

=
𝐺

𝐼
∑(𝐸𝑡𝑥𝑡+ℎ + 𝜔𝑡+ℎ,𝑡

𝑖 ) 

𝐼

𝑖=1

+
1 −  𝐺

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−
𝐼

𝑖=1

 (A.19) 

 

⟹
1

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

+
𝐼

𝑖= 1

=
𝐺

𝐼
∑(𝜔𝑡+ℎ,𝑡

𝑖 ) 

𝐼

𝑖=1

+ 𝐺(𝐸𝑡𝑥𝑡+ℎ) +
1 −  𝐺

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−
𝐼

𝑖=1

 

We can reasonably assume that 
1

𝐼
∑ (𝜔𝑡+ℎ,𝑡

𝑖 ) 𝐼
𝑖=1  = 0, and 

1

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

+
𝐼
𝑖= 1 = 𝐹𝑡𝑥𝑡+ℎ, and from 

equation (A.14), we know: 

1

𝐼
∑ (𝐸𝑡𝑥𝑡+ℎ

̂ 𝑖
)

−
𝐼

𝑖=1

=
1

𝐼
∑ 𝐸𝑡−1

𝑖 (𝐸𝑡−1𝑥𝑡+ℎ ) 

𝐼

𝑖=1

=  
1

𝐼
∑ 𝐸𝑡−1

𝑖 (𝐸𝑡−1𝑥𝑡+ℎ ) 

𝐼

𝑖=1

=  
1

𝐼
∑ 𝐸𝑡−1

𝑖 (𝑥𝑡+ℎ ) 

𝐼

𝑖=1

= 𝐹𝑡−1𝑥𝑡+ℎ 

Therefore, we can rewrite equation (A.19) as: 

 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝐺)𝐹𝑡−1𝑥𝑡+ℎ + 𝐺(𝐸𝑡𝑥𝑡+ℎ)  (A.20) 

Equation (A.20) is equivalent to Coibion and Gorodnichenko’s (2015) own equation (8). Using 

equation (A.10), we can re-write (A.20) as: 
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𝐹𝑡𝑥𝑡+ℎ = (1 − 𝐺)𝐹𝑡−1𝑥𝑡+ℎ + 𝐺(𝑥𝑡+ℎ − 𝑣𝑡+ℎ,𝑡) 

Adding and subtracting 𝑥𝑡+ℎ, we get: 

⟹ 𝐹𝑡𝑥𝑡+ℎ = (1 − 𝐺)𝐹𝑡−1𝑥𝑡+ℎ + 𝐺(𝑥𝑡+ℎ −  𝑣𝑡+ℎ,𝑡) + 𝑥𝑡+ℎ −  𝑥𝑡+ℎ 

Re-arranging certain terms: 

⟹ 𝐹𝑡𝑥𝑡+ℎ − 𝑥𝑡+ℎ =  (1 − 𝐺)(𝐹𝑡−1𝑥𝑡+ℎ −  𝑥𝑡+ℎ) − 𝐺( 𝑣𝑡+ℎ,𝑡) + (1 − 𝐺)(𝐹𝑡𝑥𝑡+ℎ) − (1 − 𝐺)(𝐹𝑡𝑥𝑡+ℎ)   

⟹ 𝐹𝑡𝑥𝑡+ℎ − 𝑥𝑡+ℎ =  (1 − 𝐺)(𝐹𝑡−1𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ) − 𝐺( 𝑣𝑡+ℎ,𝑡) + (1 − 𝐺)(𝐹𝑡𝑥𝑡+ℎ − 𝑥𝑡+ℎ) 

⟹ 𝑥𝑡+ℎ − 𝐹𝑡𝑥𝑡+ℎ =
(1 − 𝐺)

𝐺
(𝐹𝑡𝑥𝑡+ℎ −  𝐹𝑡−1𝑥𝑡+ℎ) +  𝑣𝑡+ℎ,𝑡 (A.21) 

 

with 𝛽 =
1−𝐺

𝐺
, equation (A.21) reduces to equation (A.8). Therefore, both sticky-information 

models and noisy-information models establish a similar relationship between ex-post forecast 

errors and ex-ante forecast revisions. 

 


